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We present an overview of the simulation methods available to calculate the phenomenological coefficients

which appear in the Frank free energy of nematic liquid crystals: the elastic constants, helicity parameter, and

flexoelectric coefficients. We concentrate on approaches which are based on measuring and correlating

molecular orientational stresses, as these have not received much attention previously, and their statistical

mechanical basis seems not to be widely understood. We relate methods which rely on applying external fields

or distortions to methods which rely on static equilibrium correlations, highlighting some of the unresolved

problems, and presenting some new results and perspectives.

I Introduction

The purpose of this article is to review some of the statistical
mechanical expressions for calculating properties of nematic
liquid crystals, from a knowledge of molecular properties, in
computer simulations. We shall focus on the terms which
appear in the Oseen–Frank free energy:1–3 the flexoelectric
coefficients, and the helicity parameter, which accompany
linear terms in the director gradients; and the Frank elastic
constants which appear with squared gradient terms. These
properties, along with surface anchoring coefficients (which we
shall not discuss here) are amongst the most fundamental in
liquid crystal device design: there is a clear need to relate them
to molecular shape, and the details of molecular interactions,
and simulation provides a natural tool for this purpose. As part
of this review, we present new methods for estimating
flexoelectric coefficients and elastic constants, which may be
worth testing in simulations, and a recently-tested method for
calculating the helicity parameter, and hence the helical pitch.
A key element in this process is the identification of

microscopic variables which correspond to macroscopic
(orientational) stresses and strains, a situation which has
been explored quite thoroughly in the analogous situation of
computing solid-state elastic moduli. A one-dimensional
example illustrates, schematically, the main points. Thermo-
dynamic fluctuation theory4,5 may allow one to write the free
energy of a condensed-phase system in the form of an
expansion in the gradient Q’~hQ/hx of some order parameter
Q(x) which is assumed to vary smoothly in space
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(1)

Q̃(k) denotes the Fourier transform of Q(r) (see Appendix A).
This expansion should hold at long wavelength or small
wavenumber k, and a large-k cutoff is implicit in defining the
scale of coarse-graining: the precise choice of cutoff should not

be significant. Often one includes a term ½CQ(x)2 in the above
equation, which would lead to the definition of a correlation
length j~d(K/C); omitting this implies that correlations are
long-ranged (typically decaying algebraically rather than
exponentially).
Suitable stress, s(x), and strain, Q’(x), variables are defined

through a fundamental thermodynamic relation such as

dU~TdSz

ð
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dxs xð ÞdQ’ xð Þ

~TdSz
1
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X
k

~s {kð Þikd~Q kð Þ,
(2)

with an associated thermodynamic derivative, namely an
elastic modulus K, which is assumed to depend at worst only
weakly on k:

K~
Ls
LQ’

u s xð Þ~KQ’ xð Þ u ~s kð Þ~ikK~Q kð Þ: (3)

Then it may be shown that the Helmholtz free energy
F~U2TS, obtained from eqn. (2), satisfies

L2F

L~Q kð ÞL~Q k’ð Þ

����
T

~k2Kd{k’,k:

This provides the necessary link F<F.
One way to proceed is to recognize that the probability

distribution function for fluctuations of Q will take a Gaussian
form dictated by

P Q xð Þ½ �!e{bF Q xð Þ½ �, b~1=kBT :

An advantage of this approach lies in the relative ease of
identifying a microscopic variable corresponding to Q. This
leads to several variants of the ‘strain fluctuation’ method. In
the context of crystal elastic constants, one may study strains
defined through Fourier components of atomic displacements6

giving a relation of the type

S~Q kð Þ~Q {kð ÞT~VkBT

Kk2
: (4)

A similar equation based on molecular orientations, which
{Basis of a presentation given at Materials Discussion No. 4, 11–14
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define director fluctuations, may be derived for nematic liquid
crystals.7,8 In this context, ‘strain’ means a gradient of the
director n̂: splay, twist or bend. This has been the standard
approach to the determination of Frank elastic constants by
simulation for many years.9–13 It is well tailored to the periodic
boundary conditions commonly used in simulation. On the
other hand, an extrapolation to low-k is necessary (with an
associated increase in the timescales of the most important,
longest-wavelength, fluctuations); it is not possible simply to
take the limit k~0 in eqn. (4). Moreover, for realistic, three-
dimensional, systems, K is replaced by a tensor K, and some
kind of matrix inverse must be taken in eqn. (4), which
complicates the analysis somewhat. A related approach (for
crystals) is to perform a finite system-size analysis on the strain
fluctuations in real space;14 in a conventional periodic system
one also needs to apply a constraint (in the analysis) to reflect
the fact that the simulation box has fixed size and shape.
Finally, one may modify the simulation to allow the system to
change its shape and size, and hence (in principle) measure K
from the overall strain fluctuations;15,16 however, this approach
seems to give poor convergence.17,18 No similar approaches
have been applied to liquid crystals, and we do not discuss them
further here.
A second possible approach is to use the definition eqn. (3)

directly: to carry out a simulation of a strained system, ideally
one in which the strain is uniform, and measure the induced
stress. This requires the derivation of a microscopic expression
for the stress; for atomic crystals, the stress tensor may be
defined in terms of intermolecular forces, while the analogous
quantity for liquid crystals involves intermolecular torques.
This approach is not widespread; to our knowledge, we carried
out the only determination of a liquid crystal twist elastic
constant in this way some years ago.19 The geometry of
periodic boundaries does not permit one to apply uniform
splay or bend deformations, so this approach is limited. If one
wishes to measure all the elastic constants in this way, it is
necessary to perturb the system with some nonzero-k field,
which induces a k-dependent orientational strain compatible
with the boundaries. However, there are many possible
perturbing fields, and the stress response may, in general,
depend on which field is applied; part of this article is devoted
to discussing this point. The situation is simpler if one wishes to
measure terms in the free energy which are linear in the
orientational strains. For chiral molecules, and for molecules
exhibiting flexoelectric behaviour in the presence of a uniform
electric field, the undistorted liquid crystal is already in a state
of nonzero, uniform stress: this provides a practical route to the
helicity parameter20–23 and the flexoelectric coefficients. We
describe this proposed method below.
A third approach combines equations like (3), (4) to give

S~s kð Þ~s {kð ÞT~VkBTK (5)

that is, one should be able to measure K through stress
fluctuations. A key point of this equation is that the quantity
on the left is expected to be well behaved when one takes the
limit24 kA0, so there is no longer any need to perform an
extrapolation: one may simply study fluctuations of the
extensive quantity swlimkA0s(k). This makes it potentially
very attractive from the viewpoint of simulations. However,
this equation is misleading. When the conventional micro-
scopic expression for the stress tensor is adopted, eqn. (5) gives
an infinite frequency elastic modulus, defined as the ratio of the
time derivative of the stress to the rate of strain. For example,
in a simple liquid, the isothermal shear elastic constant is zero,
while the infinite frequency shear elastic modulus is given by an
equation like (5).24 For crystals, the necessary expressions for
isothermal elastic constants are quite well known.16,18,25–27 For
liquid crystals, corresponding derivations have appeared,28–30

albeit in rather brief form. Our experience is that there is still
considerable confusion about the statistical mechanical back-
ground to these equations, particularly in the context of
periodic systems used in simulations; because of this, we devote
a large part of the current article to them.
Yet a fourth approach exists. The squared-gradient form of

eqn. (1) may be derived in a density functional formalism: in
fact it arises directly from a low-k expansion of the direct
correlation function c(1,2), where 1 and 2 represent the
positions r and orientations V of two molecules. Accordingly,
terms like the elastic constants, helicity coefficient, and
flexoelectric coefficients, may be expressed as integrals over
c(1,2).31–39 This has led to some determinations of these
properties by simulation40–45 in a two-stage process: (i) invert
the pair correlation function h(1,2) of a uniform liquid crystal,
using the Ornstein–Zernike equation, to give c(1,2); (ii)
compute the various integrals over c(1,2) to give properties
of interest. This article will not focus on this approach, but we
just make a few comments. Firstly, the inversion procedure
h(1,2)Ac(1,2) involves some of the same difficulties as the
direct analysis of low-k ‘strain’ fluctuations: for example the
asymptotic behaviour nQ̃(k)Q̃(2k)myk22 implies long-ranged
correlations of some components of h(1,2)yr21 in three
dimensions, which must be handled carefully. Secondly, care
must be taken to formulate the distortion of the single-particle
density, r(1)w(r,V), which underpins the direct correlation
function expressions, in a sufficiently general way. The simplest
ansatz, used in deriving expressions for the Frank elastic
constants, is to simply rotate the orientational distribution
function so as to follow the director distortion: this, however,
does not allow the kind of dipolar relaxation which gives rise to
the flexoelectric effect, and this same relaxation produces
corrections to the elastic constants which will be nonzero for
unsymmetrical molecules.38,39 The third point is that, to our
knowledge, only in one case45 has c(1,2) been determined
without making significant approximations in the inversion
process, and only in this case has satisfactory agreement with
elastic constants obtained by other methods been demons-
trated. Although this approach is promising, it needs further
testing and study.
The current paper is organized as follows. In section II we set

out the macroscopic equations arising from the Frank free
energy, and emphasize the way in which they suggest
simulation ‘experiments’ to determine the coefficients appear-
ing in them. In section III we set out the microscopic approach
to determining these coefficients, concentrating on expressions
involving ‘orientational stresses’, and making contact with
statistical mechanical perturbation theory. Finally, in section
IV, we summarize and draw some conclusions. Some of the
definitions, derivations, and comparisons with other notation,
are placed in appendices.

II. Macroscopic description

A. Real-space form

Begin with the notation established by Frank,2 Meyer,46 and
Helfrich.47 If we take the unperturbed director n~z, and
consider only small deformations dn̂x, dn̂y, then there are six
nonzero gradients60

Splays: s1~Lxn̂x s2~Lyn̂y (6a)

Twists: t1~Lyn̂x t2~Lxn̂y (6b)

Bends: b1~Lzn̂x b2~Lzn̂y (6c)

with hawh/hra. The gradient tensor of n̂, defined by (+n̂)ab~
han̂b, may be expressed
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=n̂~

s1 t2 0

t1 s2 0

b1 b2 0

0
B@

1
CA:

It is sometimes convenient to define splay and bend vectors and
a twist scalar, bearing in mind that all gradients of n̂z are zero to
first order:

s~s1ẑzs2ẑ~n̂ +.n̂ð Þ (7a)

t~ t1{t2ð Þ~n̂.+ ^ n̂ (7b)

b~b1x̂zb2ŷ~ n̂.+ð Þn̂~{n̂ ^ + ^ n̂ð Þ: (7c)

This last equation follows from

{ n̂ ^ + ^ n̂ð Þð Þa~{[abcn̂b[cmnLmn̂n

~{ damdbn{dandbm
� �

n̂bLmn̂n

~n̂bLbn̂a{n̂bLan̂b

~ n̂.+ð Þn̂a{
1

2
La n̂j j2

wheresabc is the Levi–Civita tensor. Here and henceforth we
sum over repeated Greek indices; the last term vanishes because
n̂ is a unit vector. These definitions allow the Frank free energy
density to be written in a manner independent of the choice of
axes

F~

ð
drf rð Þ (8a)

f rð Þ~ 1

2
K1 sj j2zK2t2zK3 bj j2
h i

zht: (8b)

K1, K2 and K3 are respectively the splay, twist and bend elastic
constants; for chiral phases, the helicity parameter determines
the equilibrium pitch P, and corresponding wavenumber
k0~2p/P, through h~K2k0.
The flexoelectric effect arises from the coupling between

polarization and director distortion. In the presence of an
‘electric’ field E(r) which couples to a macroscopic polarization
densityp(r), the free energy density becomes

g rð Þ~f rð Þ{p rð Þ.E rð Þ:

The polarization density will take the form p(r)~pel(r)zpd(r)
containing a part pel(r) proportional to the applied field and a
part pd(r) proportional to the director distortion, each with
corresponding phenomenological coefficients. Note that, in
writing this, we simply acknowledge that a non-zero polariza-
tion may be induced by either of these physical mechanisms
operating in isolation; this does not imply that we can write
down a microscopic definition ofp in which pel and pd appear
separately. Symmetry considerations dictate61

pe1 rð Þ~e\n̂ ^ E rð Þ ^ n̂zeE E rð Þ.n̂ð Þn̂

:e\E\ rð ÞzeEEE rð Þ
(9a)

pd rð Þ~e1n̂ =.n̂ rð Þð Þze3 n̂.=ð Þn̂ rð Þ

~e1n̂ =.n̂ rð Þð Þ{e3n̂ ^ = ^ n̂ rð Þð Þ

~e1s rð Þze3b rð Þ:

(9b)

The field has been resolved into components

EE rð Þ~ E rð Þ.n̂ð Þn̂ E\ rð Þ~n̂ ^ E rð Þ ^ n̂~E rð Þ{ E rð Þ.n̂ð Þn̂:

The dielectric tensor is assumed to be diagonal in the director
frame, with components e|| and e^, respectively, along and
perpendicular to the director: these components dictate the
response of the polarization to an applied field, even in the
absence of coupling to nematic degrees of freedom. The
flexoelectric coefficients e1, e3, reflect the fact that polarization
can be induced by deforming the director, without applying a

field E(r). The free energy density takes the following form3

G~F{

ð
drp(r).E(r)~

ð
drg(r) (10a)

g(r)~
1

2
½K1 s(r)j j2zK2t(r)2zK3 b(r)j j2�

zht(r){e1E(r).s(r){e3E(r).b(r)

{
1

2
½e\ E\(r)j j2zeE EE(r)

�� ��2�:
(10b)

It is convenient to describe small deformations of the
director dn̂ in terms of a vector dh~dhĥ, which represents a
rotation through angle dh about an axis ĥ:

dh~n̂ ^ dn̂ dha~[abcn̂bdn̂c

dn̂~{n̂ ^ dh~dh ^ n̂ dna~[abcdhbn̂c:

The gradient tensor of h, (+h)ab~hahbwcab is related to +n̂ by

+h~{(+n̂) ^ n̂ Lahd~{(Lan̂b)n̂c[bcd

+n̂~(+h) ^ n̂ Lan̂d~(Lahb)n̂c[bcd:

In terms of the deformations of eqn. (6), defined with respect to
n̂~ẑ:

=h~

{t2 s1 0

{s2 t1 0

{b2 b1 0

0
B@

1
CA:

Thermodynamic (functional) derivatives of eqn. (10) may be
written

psplay(r):
dG

ds(r)
~K1s(r){e1E(r) (11a)

ptwist(r):
dG

dt(r)
~K2t(r)zh (11b)

pbend(r):
dG

db(r)
~K3b(r){e3E(r) (11c)

p(r):{
dG

dE(r)
~e1s(r)ze3b(r)ze\E\(r)zeEEE(r): (11d)

The quantities on the left of eqns. (11a)–(11c) are torques per
unit area (see later), and they will vanish in the unstrained
system. In all of these equations it is assumed that the variation
of fields and responses is sufficiently smooth that the
undistorted director orientation may be taken as a reference
direction. If the gradients and fields are constants, s(r)~s,
E(r)~E etc. everywhere, the functional derivatives on the left
of these equations become simple derivatives of the free energy
density, and the dependence on r may be dropped:

psplay~
P splay

V
:

Lg
Ls

~K1s{e1E (12a)

ptwist~
Ptwist

V
:

Lg
Lt

~K2tzh (12b)

pbend~
Pbend

V
:

Lg
Lb

~K3b{e3E (12c)

p~
P

V
:{

Lg
LE

~e1sze3bze\E\zeEEE: (12d)

Note that, in contrast to the notation for the fields and
gradients, we adopt a notation which distinguishes extensive
variables P~bdr p(r), P~bdrp(r) and intensive variables p~
P/V,p~P/V etc.
Consider now the case where the undistorted director is n̂~ẑ,

ĥ~ŷ, director deformations are parametrized by the angle dhy

such that dn̂~dhyx̂, dh~dhyŷ, and we apply either a field E||~
Ez(x) ẑ or E^~Ex(z)x̂. Then we need only consider separate
cases of pure splay, pure twist, or pure bend, generated by the
three choices of gradient direction as defined in Table 1. The

2680 J. Mater. Chem., 2001, 11, 2678–2689



free energy per unit area takes the same form in each case:

G=A~

ð
df

1

2
Kh’(f)2{eE(f)h’(f){

1

2
eE(f)2

:
ð
dfg(f)

with the variables defined in Table 2, writing dhy~h for
compactness. The calculus of variations is straightforwardly
applied to this equation. Firstly, we may identify p with the
torque. Add boundary terms of the form G1(h1) and G2(h2)
where h1~h(f1), h2~h(f2). Minimize GzG1zG2, with respect
to variations of h(f), for specified E(f). The term in e is
independent of h and therefore does not affect the profile. The
integrand depends on h’~dh/df, not on h(f) explicitly, so we
may write the Euler–Lagrange equation

d

df

Lg
Lh’(f)

~
d

df
(Kh’(f){eE(f))

~
dp(f)

df
~0[p(f)~p~constant:

(13)

At the boundaries we have

Lg
Lh’ f~f1

�� {
dG1=A
dh1

~0

Lg
Lh’ f~f2

�� z dG2=A
dh2

~0

9=
;[{p~{

dG1=A

dh1
~

dG2=A

dh2
:

From this we see that 2p is the torque per unit area exerted by
boundary 1 on the sample, and by the sample on boundary 2.
Note carefully that periodic boundary conditions used in
simulations do not imply that the torque is zero; they may,
however, impose a constraint on the director gradient. The
appropriate component of p for each symmetry case is given in
Table 2. The profile will satisfy

p(f)~
dG=A

dh’(f)
~Kh’(f){eE(f)~constant (14)

and the polarization will satisfy

p(f)~{
dG=A

dE(f)
~eh’(f)zeE(f): (15)

These macroscopic equations suggest some ways of measuring
the coefficients of interest, both in real experiments and in
simulations. If E(f)~E is uniform, the gradient h’(f) will be
constant; the typical periodic boundary conditions used in a
simulation will make h’ zero or (in the case of twist) some other
fixed value commensurate with the box length. In these
situations, measurement of p will give K and e.

B. Fourier-space form

Computer simulations are usually conducted in periodic
boundaries, in which uniform gradients may not be con-
veniently applied. Hence, some of the above relations may be
usefully expressed in Fourier space, with definitions given in
Appendix A. We may then, in suitable circumstances, take the
limit kA0 to recover bulk expressions. Using eqn. (A2d), the
free energy may be written

G~
1

V

X
k

1

2
½K1 ~s(k)j j2zK2 ~t(k)j j2zK3

~b(k)
�� ��2�

zh~t(k){e1 ~E({k).~s(k){e3 ~E({k).~b(k)

{
1

2
½e\ ~E\(k)

�� ��2zeE ~EE(k)
�� ��2�:

We choose n̂~ẑ and dn̂~dhyx̂ as before. Then, pure splay,
twist and bend deformations are related to Fourier components
of h̃y in the Cartesian directions as given in Table 1. Hence the
free energy may be written

G~
1

V

X
k

1

2
½K1k2

xzK2k2
yzK3k2

z � ~h(k)
�� ��2

zikyh~h(k){ikxe1 ~Ez({k)~h(k)

{ikze3 ~Ex({k)~h(k){
1

2
½e\ ~Ex(k)

�� ��2
zeE ~Ez(k)

�� ��2�,
where again we abbreviate dh̃y~h̃. We restrict our interest to
one or another of these pure deformations as before. Then only
one Cartesian component of k is relevant; coefficients h̃(k) with
nonzero values of the other components will be zero, and we
may write

G~
1

V

X
k

1

2
Kk2 ~h(k)

�� ��2{ike~E({k)~h(k)

{
1

2
e ~E(k)
�� ��2 (16)

where, once more, the variables appropriate to each case are
identified in Table 2. Differentiating with respect to h̃ gives

1

{ik

LG
L~h({k)

~
ikK~h(k){e~E(k)

V
~

~P(k)

V
: (17)

This equation exactly corresponds to eqn. (14). Differentiating
the free energy with respect to Ẽ gives

{
LG

L~E({k)
~

ike~h(k)ze~E(k)

V
~

~P(k)

V
: (18)

This equation exactly corresponds to eqn. (15).
How do these equations suggest ways of measuring the

desired coefficients in a simulation? In principle, in the absence
of an electric field, or chirality, the elastic constant is
determined from the relation between torque per unit area
and orientational strain, through

K~ ~P(k)=ik~h(k) (19)

while the flexoelectric coefficient is similarly determined
through the polarization response

e~ ~P(k)=ik~h(k): (20)

However, except for k~0, where the periodic boundary
conditions may constrain the corresponding director field
component, G should be minimized with respect to arbitrary
variations of h̃(k). This means that P̃(k) as defined by eqn. (17)
will be zero, so eqn. (19) cannot be used to estimate K directly.
Also, if Ẽ(k)~0, we deduce that ikh̃(k)~0, so eqn. (20) cannot

Table 2 Correspondence of variables for pure splay, twist and bend
deformations for n̂~ẑ and dn̂ in the x̂ direction

Direction
f, k

Elastic
K

Flexoelectric
e

Dielectric
e

Field
E

Torque
p

Splay x, kx K1 e1 e|| Ez pxy

Twist y, ky K2 2h 0 1 pyy

Bend z, kz K3 e3 e^ Ex pzy

Table 1 Definitions of pure splay, twist and bend deformations for
n̂~ẑ and dn̂ in the x̂ direction

Gradient dn̂(r) dh(r) Real space Fourier space

Splay x̂ cxx̂ cxŷ s(r)~hxhyẑ~cxyẑwcẑ s̃(k)~ikxh̃y(k)ẑ
Twist ŷ cyx̂ cyŷ t(r)~hyhy~cyywc t̃(k)~ikyh̃y(k)
Bend ẑ czx̂ czŷ b(r)~hzhyx̂~czyx̂wcx̂ b̃(k)~ikzh̃y(k)x̂

J. Mater. Chem., 2001, 11, 2678–2689 2681



be used to estimate e directly. We have

ik~h(k)~
e

K
~E(k),

an equation which is only useful if both sides are nonzero. If
this is the case, then the ratio e/K may be estimated from ikh̃(k)/
Ẽ(k) (director response to spatially varying applied field), while
eqn. (18) leads to

~P(k)~ike~h(k)ze~E(k)~(
e2

K
ze)~E(k)

(polarization response to applied field) which replaces
eqn. (20). This is not very useful, as the e term is likely to
dominate in cases of practical interest. Notwithstanding this,
the flexoelectric coefficient may be determined by applying an
electric field, or equivalently the chiral parameter may be
determined, by making a torque measurement and allowing
kA0:

lim
k?0

~P(k)~{e~E(k)[
P

V
{eE:

Note once more that P~limkA0P(k) (an extensive dynamical
variable), but that E~limkA0Ẽ(k)/V where E represents the
constant (‘average’) field.
Something more is necessary to generate a nonzero torque in

the general case. Consider adding an extra term, of chosen
wavenumber k, to the free energy, of the form

Gl~G0zl~h({k)

where now G0 is the original free energy, eqn. (16); l plays the
role of a Lagrange multiplier, which will be chosen to generate
a desired orientation profile. Minimizing Gl with respect to
variations of h̃ gives explicitly

1

{ik

LGl

L~h({k)
~

ikK~h(k){e~E(k)zlV=({ik)

V

~
~P(k)zlV=({ik)

V
~0:

This gives the responses in the three variables of interest

~P(k)~lV=ik[~t(k):ik ~P(k)~lV (21a)

~h(k)~
lV

k2K
z

e

K

~E(k)

ik
[ik~h(k)~

lV

ikK
z

e

K
~E(k) (21b)

~P(k)~
e

K

lV

ik
z(

e2

K
ze)~E(k) (21c)

where we have defined a macroscopic variable t̃ to satisfy
t̃(k)~ikP̃(k). Under conditions of zero field, Ẽ(k)~0 these
satisfy eqns. (19,20). Note that, for the angle h describing the
distorted director profile to be small in the limit of low k, it is
necessary for the parameter l to be of O(k2). Another
interesting (and ‘conjugate’) modified free energy is

Gl{G0~l~t({k)~{lik ~P({k)

~lik({ikK~h({k){e~E({k)):

Minimizing Gl with respect to variations of h̃ gives

1

{ik

LGl

L~h({k)
~

~P(k){lV ikK

V
~0

Hence the responses

~P(k)~iklVK[~t(k)~ik ~P(k)~{lVk2K (22a)

~h(k)~lVz
e

K

~E(k)

ik
[ik~h(k)~iklVz

e

K
~E(k) (22b)

~P(k)~iklVez(
e2

K
ze)~E(k) (22c)

and these also satisfy eqns. (19,20). Note that, for the angle h
describing the distorted director profile to be small in the limit
of low k, it is necessary for the perturbation parameter l to be
of O(1). In the following section we address the question of
whether these macroscopic results can be translated into
microscopic perturbation-response expressions for the elastic
and flexoelectric coefficients.

III. Microscopic description

It is not difficult to write down microscopic expressions for the
polarization and the director variation. The polarization
density is defined on the basis of a vector pi fixed in the
frame of each molecule i, whose position vector is ri:

p(r)~
X

i

pid(r{ri) ~P(k)~
X

i

pie
{ik.ri :

The choice of pi will affect the values of flexoelectric
coefficients, but not the essential physics; for molecules
possessing a degree of symmetry, a natural choice of pi may
present itself; for realistic models, pi will be determined by the
physical interaction of electrostatic multipole moments with
applied electric fields.
The definition of director fluctuations was addressed by

Forster.48,49 Assume that, even if our molecules are not
symmetrical, we may identify a unique axis unit vector ûi whose
collective alignment defines the director. Then we define a
single-molecule second-rank orientation tensor qi

qi~ûiûi{
1

3
1 qiab~ûiaûib{

1

3
dab:

and the collective q-tensor density

q(r)~
XN

i~1

qid(r{ri) ~Q(k)~
XN

i~1

qie
{ik.ri :

In an undistorted liquid crystal

SqiT~S(n̂n̂{
1

3
1)[

Sq(r)T~
N

V
SqiT

~rS(n̂n̂{
1

3
1) everywhere

where r~N/V is the molecular number density and S is the
order parameter. Small spatial director variations are then
expected to appear in q as follows:

q(r)~rS(n̂n̂zdn̂(r)n̂zn̂dn̂(r){
1

3
1)

where dn̂(r)?n̂~0. We may obtain dn̂(r) from q(r) by
contracting on one side with n̂ and on the other with 12n̂n̂48,49

dn̂(r)~½1{n̂n̂�.q(r)
rS

.n̂~n̂.
q(r)
rS

.½1{n̂n̂�:

In the coordinate system with n~ẑ, this equation is

q(r)~rS

{ 1
3

0 dn̂x(r)

0 { 1
3

dn̂y(r)

dn̂x(r) dn̂y(r)
2
3

0
B@

1
CA:

k-dependent fluctuations of the director may then be
defined48,49

~nx(k)~~Qxz(k)=rS

~ny(k)~~Qyz(k)=rS

~nz(k)~0

where we abbreviate dñ̂~ñ for clarity.
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The considerations of the previous section suggest that the
microscopic k-dependent torque density

~t(k)~
X
i=j

(tijz
1

2
rij ^ f ij)e

{ik.ri (23)

may correspond to the variable t̃(k) defined in eqn. (21a). Here,
fij is the force, and tij the torque, exerted on molecule i by
molecule j; the separation vector is defined rij~ri2rj. The laws
of conservation of linear momentum and angular momentum
give, respectively,

f ijzf ji~0 and tijztjizrij ^ f ij~0:

Applying this last equation to eqn. (23) and exploiting
symmetry under relabelling of indices i<j, it follows that
limkA0t̃(k)~0. Therefore this quantity has a low-k expansion50

~t(k)~
1

2

X
i=j

(tijz
1

2
rij ^ f ij)(e

{ik.ri{e{ik.rj )

~
1

2

X
i=j

(tijz
1

2
rij ^ f ij)(1{e{ik.rij )e{ik.ri

~ik.½{ 1

2

X
i=j

rij(tijz
1

2
rij ^ f ij)(

eik
.rij{1

ik.rij
)e{ik.ri �

~ik. ~P(k):

(24)

This suggests that the microscopic (tensor) analogue of the
variable P̃(k) appearing in the previous section is

~P(k)~{
1

2

X
i=j

rij(tijz
1

2
rij ^ f ij)(

eik
.rij{1

ik.rij
)e{ik.ri :

In the limit kA0 this reduces to

P~ lim
k?0

~P(k)~{
1

2

X
i=j

rijtij (25)

where we use the identityX
i=j

rija(rij ^ f ij)b~
X
i=j

rjia(rji ^ f ji)b~{
X
i=j

rija(rij ^ f ij)b~0:

The tensor defined by eqn. (25) is the same as the one used
elsewhere;20–22,30 its derivation, both in Fourier space and
directly in the k~0 limit has been given before,19 and it is
further discussed in Appendix B. Some justification for our
definition of t̃(k) comes from the microscopic interpretation of
P as the transmitted torque per unit area. The argument
follows the discussion of the virial expression for the pressure
by Haile,51 but it applies to any molecular pair property.
Consider a plane in the liquid crystal, passing through the
origin, perpendicular to the x direction. Suppose also that the
molecular indices i, j, are chosen in order of increasing x
coordinate. The total torque per unit area exerted by molecules
lying on one side of the plane on molecules lying on the other
side may be written

Torque=area~
1

A

X
i

S0
X

j

T0tij

where the notation indicates that each sum is restricted to
molecules lying on the appropriate side of the plane. (For the
case of interest to us, we may drop terms in rij‘fij, as they would
correspond to a sustained antisymmetric component of the
stress). Averaging this over a slab of liquid of width l gives

Average torque=area~
1

A

1

l

ð
0

‘ X
i

Sx
X

j

Txtijdx:

Now the integral is evaluated using the sequence of (uneven,
but very small) intervals dxk~xkz12xk~xkz1,k. The integral

becomes a sum over all particles k lying in the interval 0¡xk¡l

and the resulting triple summation may be rearranged:

Average torque=area~
1

V

X
k

X
iƒk

X
j>k

tijdxk

~
1

V

X
i

X
j>i

tij

Xj{1

k~i

(xkz1{xk)

~{
1

V

X
i

X
j>i

tijxij

~{
1

2V

X
i

X
j=i

tijxij :

This corresponds to the appropriate component of P, as
defined by eqn. (25). Consideration of a narrow slab, lA0,
allows one to generalize to a spatially varying density P(r)
which behaves in the correct way, and whose Fourier transform
is P̃(k).
Notwithstanding the fact that t̃ vanishes at low k, the

correlation with director fluctuations remains non-zero in this
limit. Take once more n̂~ẑ and examine fluctuations dn̂x~hy.
Masters50 has shown that

S~nx(k)~ty({k)T~S~hy(k)~ty({k)T

~
S~Qxz(k)~ty({k)T

rS

~{VkBT as k?0

(26)

This result reflects the ‘softness’ of the liquid crystal response to
a long-wavelength perturbation. If a term lH’ with H’~t̃y(2k)
is added to the hamiltonian, the response in the director field,
given by conventional linear response theory (eqn. (B4)) would
be

S~nx(k)jflT~{blS~nx(k)~ty({k)T~lV (27a)

[Sd~nx(r)jflT~leik
.r (27b)

with appropriate superpositions giving real (sine or cosine)
responses to real perturbations. Comparing this with eqn. (22b)
supports the above identification of t.

A. Twist deformations

In this and the following sections, we assume that the gradient
is chosen along one of the coordinate axes, to generate a pure
splay, twist, or bend deformation, with the definitions of
Tables 1 and 2. We consider a twist first, in the absence of any
fields, so the free energy G reduces to the standard Frank free
energy F. For a uniform twist of this kind, taking eqn. (8) and
integrating over the volume V, we get

Free energy: F=V~
1

2
K2c

2{hc: (28)

Torque=area:
SPyyTc

V
~

LF=V

Lc
~K2c{h: (29)

The reference state of minimum free energy has c~h/K2;
nematics are called chiral if h|0 and twisted if c|h/K2.
Uniform twists with c|h/K2 are due, typically, to boundary
conditions produced by the interaction with surfaces. In
computer simulations a uniform twist can be conveniently
introduced in a bulk cell of fluid using normal, or twisted,
periodic boundary conditions.19 If a fluid of achiral molecules,
for which h~0 (and hence nPyym0~0 when c~0), is
maintained in a state of uniform twist, c|0, then eqn. (29)
may be used to determine K2.

19 For a fluid of chiral molecules,
for which h|0 (and so nPyym0|0 when in the untwisted state
c~0), if the untwisted state is maintained by the boundary
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conditions, then eqn. (29) may be used to determine the chiral
parameter h.20–22 It has been found useful23 to combine the
equations with c~0 and with c|0 to give

SPyyT0
V

~{h (30a)

SPyyTc
V

~K2c{h (30b)

and hence

K2~
SPyyTc{SPyyT0

Vc
(31a)

h~{
SPyyT0

V
: (31b)

Thus, two simulations with different values of c are sufficient to
determine K2 and k0 separately. The same formulae hold
equally well for pure phases, where every molecule is chiral, and
solutions, where chiral and achiral molecules are mixed. It
would be nice to determine K2 from ensemble averages
calculated in the untwisted state. Referring to Appendix B, it
should be possible to rewrite eqn. (31a) in the form

K2~
1

V

LSPyyTc
Lc

����
c~0

~
SJyyyyT{bðSP2

yyT{SPyyT2Þ
V

: (32)

This appears to be a new expression, untested in simulations. It
is potentially more convenient than measuring fluctuations and
extrapolating to low wavenumber, or applying a twist
deformation and measuring the derivative numerically. Unfor-
tunately (see Appendix B) the derivation of a microscopic
expression for Jyyyy seems to be nontrivial; although a
suggestion has been given in the literature29 that it is possible,
no explicit expressions have been given.
One might hope that the Fourier space variables defined

earlier in this section would resolve the issue. Suppose we apply
a perturbation term of the form lH’ with H’~t̃y(2k), choosing
k~kŷ to generate twist. Then, referring to eqn. (27a), we expect
to see the following responses:

S~nx(k) flj T~lV (33a)

S~ty(k) flj T~{blS~ty(k)~ty({k)T

~{k2blS ~Pyy(k) ~Pyy({k)T
(33b)

S ~Pyy(k) flj T~{blS ~Pyy(k)~ty({k)T

~ikblS ~Pyy(k) ~Pyy({k)T:
(33c)

Taking ratios, and allowing kA0, would suggest

K2~ lim
k?0

(ik){1 S ~Pyy(k) flj T
S~nx(k) flj T

~b
SPyyPyyT

V
:

Unfortunately, this is incorrect: it would imply a non-zero
elastic constant even in an isotropic liquid. Thus, after all, a
‘thought experiment’ based on the microscopic torque density
does not appear to be a suitable way to generate the desired
deformation. Another way of putting this24 is that t̃(k) is not a
suitable variable onto which to ‘project’ microscopic variables
in order to derive thermodynamic fluctuations.

B. Splay deformations

Consider now a splay deformation, once more in the absence of
fields, so the free energy G again becomes F. For a uniform

splay, integrating eqn. (8) over volume gives

Free energy: F=V~
1

2
K1c

2 (34)

Torque=area:
SPxyTc

V
~

LF=V

Lc
~K1c: (35)

The flexoelectric coefficient associated with splay, e1, is defined
as the response of the z-component of the polarization vector of
molecules to the applied director deformation (see section IIA).
Noting that there is no applied field coupling directly to P, the
coefficient satisfies

e1c~
SPzTc

V
: (36)

The above expressions involve measuring the torque density or
polarization in a uniformly splayed system: this is not as
convenient as imposing constant twist. However, it is also
possible to convert them into equations which apply to the
undistorted system.30 Referring to Appendix B, and making
the approximation that Pz does not depend explicitly on c,
gives

e1~V{1 LSPzTc
Lc

����
c~0

~
{bSPzPxyT

V
(37)

This matches exactly the expression of Nemtsov and Osipov30

(see Appendix C); this approach has been attempted in
simulation by Billeter and Pelcovits.52 The corresponding
expression for the torque should be directly analogous to
eqn. (32):

K1~
1

V

LSPxyTc
Lc

����
c~0

~
SJxyxyT{b(SP2

xyT{SPxyT2)
V

(38)

but again, its implementation relies on a suitable microscopic
definition of Jxyxy.
The flexoelectric coefficient may also be determined by

measuring the torque per unit area in an undistorted system
(i.e. splay s~0), in the presence of a uniform polarizing field E.
Add a coupling term lH’ to the hamiltonian with l~Ez,
H’~2Pz, and consider measuring a variable A~Pxy/V.
Instead of measuring this in a perturbed ensemble fEz, we
may relate it to an average taken in the zero-field ensemble,
using eqn. (B4). The free energy (see section IIA) takes the form

Free energy: G=V~
1

2
K1c

2{e1Ezc{
1

2
eEE2

z

and in the limit cA0

Torque=area:�e1Ez~
LG=V

Lc

����
c~0

~
SPxyjfEzT

V

to give once more (see Appendix B)

e1~{V{1 LSPxy fEz
j T

LEz

����
Ez~0

~{b
SPzPxyT

V

in agreement with eqn. (37). Notice that the measurement of
the polarization itself in the presence of the external field is not
a useful route to the flexoelectric coefficient: P cannot be
separated microscopically into a part due to distortion and a
part due to the field, unless one or the other of them is zero. In
this case, the polarization response is (see section IIA)

SPz fEz
j T

V
~e1czeEEz~eEEz if c~0:

eE~V{1 LSPz fEz
j T

LEz

����
Ez~0

~b
SP2

zT
V

:

Oncemore, onemight hope that a Fourier-space perturbation
would be suitable for simulation experiments; add a term lH’
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with H’~t̃y(2k) and select k~kx̂ to generate splay:

S~nx(k) flj T~lV (39a)

S~ty(k) fj lT~{blS~ty(k)~ty({k)T

~{k2blS ~Pxy(k) ~Pxy({k)T
(39b)

S ~Pxy(k) fj lT~{blS ~Pxy(k)~ty({k)T

~ikblS ~Pxy(k) ~Pxy({k)T
(39c)

SPz(k) flj T~{blSPz(k)~ty({k)T

~ikblSPz(k) ~Pxy({k)T:
(39d)

Taking the limit kA0, gives

K1~ lim
k?0

(ik){1 S ~Pxy(k) flj T
~nx(k) flj T

~b
SPxyPxyT

V

e1~ lim
k?0

(ik){1 S ~Pz(k) flj T
S~nx(k) flj T

~b
SPzPxyT

V

Again, these are clearly wrong: K1 would be nonzero even in an
isotropic liquid, while the expression for e1 has the wrong sign.

C. Bend deformations

Consider finally a bend deformation, once more in the absence
of fields, so the free energy is F once more. The derivation
follows closely that of sections III B, III C. Integrating eqn. (8)
gives

Free energy: F=V~
1

2
K3c

2 (40)

Torque=area:
SPzyTc

V
~

LF=V

Lc
~K3c: (41)

The corresponding flexoelectric coefficient, e3, is measured
through the response in the x-component of polarization

e3c~
SPxTc

V
: (42)

Rather than attempt to measure these quantities in a distorted
system, they may be converted to averages in the uniform
system:

e3~V{1LSPxTc
Lc

����
c~0

~{
bSPxPzyT

V
: (43)

Again, the identical expression was obtained by Nemtsov and
Osipov30 (see Appendix C). The corresponding elastic constant
expression should take the form

K3~
1

V

LSPzyTc
Lc

����
c~0

~
SJzyzyT{b(SP2

zyT{SPzyT2)
V

(44)

subject to a proper definition of Jzyzy.
As before, it is illuminating to consider measuring the torque

density in an undistorted system (i.e. bend b~0), in the
presence of a uniform polarizing field. Add a term lH’ to the
hamiltonian with l~Ex, H’~2Px, and measure A~Pzy/V.
We aim to compare with

Free energy: G=V~
1

2
K3c

2{e3Exc{
1

2
e\E2

x

and in the limit cA0

Torque=area:{e3Ex~
LG=V

Lc

����
c~0

~
SPzy fEx

j T
V

to give, from Appendix B

e3~{V{1 LSPzy fEx
j T

LEx

����
Ex~0

~{b
SPxPzyT

V

in agreement with eqn. (43). If the bend is zero, the polarization

response is (section IIA)

SPx fEx
j T

V
~e3cze\Ex~e\Ex if c~0:

e\~V{1 LSPx fEx
j T

LEx

����
Ex~0

~b
SP2

xT
V

:

The derivation in Fourier space goes through as before. Add a
term lH’ with H’~t̃y(2k) and select k~kẑ to generate bend.
This gives

K3~ lim
k?0

(ik){1 S ~Pzy(k) flj T
S~nx(k) flj T

~b
SPzyPzyT

V

e3~ lim
k?0

(ik){1 S ~Px(k) flj T
S~nx(k) flj T

~b
SPxPzyT

V

and these are, once more, incorrect.

IV. Conclusions

In this article, we have tried to make clear which expressions
may be used to measure properties of interest in simulations of
liquid crystals, and in which areas problems remain. Zero-
wavevector expressions exist for flexoelectric coefficients, in
terms of a microscopically-defined orientational stress. This
can be thought of as measuring the response of the polarization
to a uniform director gradient, or as measuring the field-
induced stress, in a liquid crystal which is constrained to have a
uniform director. A similar expression exists for the helicity
parameter, which may be determined from the orientational
stress in an untwisted liquid crystal composed of chiral
molecules. The elastic constants may be determined in terms
of the orientational stress in a liquid crystal with uniform
director gradient; unfortunately, it is only convenient to do this
for the twist elastic constant in a simulation employing periodic
boundaries. In principle, zero-wavevector stress fluctuation
expressions could provide an alternative route to the elastic
constants, but the details have yet to be determined. A possible
route via reciprocal-space perturbations and responses has
been investigated, but has been found to give incorrect results.
One of the advantages of the stress–response equations

presented here is that they enable one to look at the origin of
the coefficients within the forces and torques between
molecules. For example, the helicity parameter for a dilute
solution of chiral dopants (i.e. the helical twisting power) can
be resolved into primary terms arising directly from the solute–
solvent interactions, and the secondary effects in the solvation
shells around the dopant.
This article presents unfinished work: it is hoped that it will

provoke some discussion and debate, which will hopefully lead
to a resolution of the remaining difficulties. One possible
approach will be to consider carefully the order of magnitude
of perturbations and responses in Fourier space, i.e. to
explicitly retain terms of a consistent order in k. It is also
possible to examine the effects of more general canonical
transformations than the simple one presented in Appendix B.
Another avenue is to link, more directly, the stress response
formulae to the direct correlation function which appears in
density functional theory. Meanwhile, those expressions which
are known to be correct are being usefully employed in
simulations, aimed at understanding the link between mole-
cular shapes, attractive forces, and phenomenological con-
stants. Those results will be reported elsewhere.
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Appendix A: Fourier transform definitions

Assuming periodic boundaries, for which, in the limit of large
volume, X

k

<
V

(2p)3

ð
dk

and for real fields a(r), define

~A(k)~

ð
V

dre{ik.ra(r)~~A({k)�

a(r)~
1

V

X
k

eik
.r ~A(k)~

1

V

X
k

eik
.r ~A({k) (A1b)

and note the standard relations

Orthogonality:

ð
V

drei(k{k’).r~Vdk,k’

Completeness:
X

k

e{ik.(r{r’)~Vd(r{r’) (A2b)

Derivatives: f+A(k)~ik~A(k) (A2c)

Parseval:

ð
dra(r)b(r)~

1

V

X
k

~A(k)~B({k)

~
1

V

X
k

~A({k)~B(k):

(A2d)

For properties which may be expressed as sums localized
around individual molecules, we define a density

a(r)~
XN

i~1

aid(r{ri) ~A(k)~
XN

i~1

aie
{ik.ri :

For a dynamical variable A, we use the notation A without an
argument to mean the extensive, zero-k, value:

A~ lim
k?0

~A(k)~

ð
V

dra(r)~
XN

i~1

ai

whereas, for the fields and gradients, we mean the intensive
quantities

E~ lim
k?0

~E(k)

V
~

1

V

ð
V

drE(r), s~ lim
k?0

~s(k)

V
~

1

V

ð
V

dr s(r), etc:

Appendix B: Thermodynamic perturbation theory

Standard thermodynamic perturbation theory (see, for exam-
ple, Gray and Gubbins,53 or Hansen and McDonald,54 p. 148)
begins with the assumption that the hamiltonianHl, and hence
the ensemble distribution function

fl!e{bHl

depend on a parameter l which takes a value l~0 in the
reference state. The free energy may then be written

LFl

Ll
~S

LHl

Ll

����flT: (B1)

where we adopt the shorthand

SA flj T~
ðð
dqdpA(q,p)fl(q,p)~

ÐÐ
dqdpAe{bHlÐÐ
dqdpe{bHl

using generalized coordinates q and conjugate momenta p
which are abbreviations for the full set qm, pv. Defining

H’l~
LHl

Ll
, H’’l~

LH’l
Ll

~
L2H’l
Ll2

, (B2)

the free energy of the perturbed system then becomes

Fl~F0zlSH’Tz
1

2
l2½SH’’T

{b(SH’2T{SH’T2)�zO(l3),

(B3)

where we abbreviate nH0|f0m~nHm. The average of some
property Al in the perturbed ensemble may be written

SATl:SAl flj T~SATzlSA’T

{bl(SAH’T{SATSH’T)zO(l2),
(B4)

where we allow for the possibility that A also depends on l, and
so include a term in

A’l~
LA

Ll
: (B5)

For our purposes, however, it is not obvious how to connect
the response of variables to a distortion of the system with
mechanical perturbations described through the hamiltonian,
as above. Nonetheless, such a connection can be made; here we
follow closely the discussion of elastic constants and visco-
elasticity by Squire et al.,25 Lutsko,26 Hess et al.,27 Bavaud
et al.,55 Bavaud56,57 and the work of Nemtsov et al.28 and
Nemtsov.29 Write the hamiltonian as:

Hl(q,p,t)~H(q,p)zUl(q):

H is the internal hamiltonian with (pair) potential and kinetic
energy terms. Ul is an external potential: initially it will be
convenient to regard Ul as a wall potential confining the system
coordinates to a corresponding region Dl. Deformations of the
system (strains) enter through the effect of l (which may, in
principle, vary with time, although we shall not make this
explicit) on the distortion of the domain Dl and hence on the
wall potential; we do not regard l as appearing explicitly in Ul

in any other way. Consider now a canonical transformation of
coordinates and momenta, generating the distorted system
coordinates from those of an undistorted reference system:
(q,p)B(q̊,p̊). In fact, we shall consider an infinitesimal point
transformation defined by the F2-type generating function of
Goldstein58

F2(q,p)~q.(1zlG).p

where l is a small parameter, and G is a matrix which does not
depend explicitly on coordinates or momenta. In terms of this
function

LF2

Lp
~q~q.(1zlG)[q~q.(1{lG)

p~(1{lG).pZ
LF2

Lq
~p~(1zlG).p:

In inverting (1zlG)21~12lG above, we drop terms O(l2).
Conservation of phase-space volume under a canonical
transformation allows us to relate the N-particle distribution
functions

fl(q,p):fl(qzlq.G ,p{lG .p)~fl(q,p):

The point of the transformation is that the domain Dl is

(A1a)

(A2a)

˚˚

˚ ˚

˚
˚

˚

˚ ˚ ˚ ˚ ˚ ˚ ˚
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transformed along with the coordinates, so we can write

Ul(q)~Ul(qzlq.G)~U0(q)

where U0 represents the external potential in the undeformed
domain D0. The internal part of the hamiltonian transforms to
give

H(q,p)~H(qzlq.G ,p{lG .p)

~H(q,p)zlH ’(q,p)zO(l2)

where

H ’~GT : H~GmnHmn, Hmn(q,p)~qm
LH

Lqn
{

LH

Lpm
pn: (B6)

All the derivatives are defined at l~0 and we have dropped
terms O(l2). The original system has now been mapped onto a
system with no dynamical deformation, specified by the
hamiltonian H(q̊,p̊)zU0(q̊), plus a small mechanical perturba-
tion term lH’(q̊,p̊).
Static ensemble averages in the perturbed reference system

follow in a completely conventional way53,54 (and time-
dependent properties follow from a consideration of the
Liouville equation,28,29,57 but this does not concern us here).
We set

fl(q,p)~f0(q,p)e
{blGmnHmn~f0(q,p)e

{blH ’

and expand to first order in l, to give the average of a property
in the perturbed ensemble

SA flj T~SAT{bl½SAH ’T{SATSH ’T�: (B7)

This is not the final expression, however. The connection with
averages in the real, distorted, system is obtained by using the
invariance of phase space elements under canonical transfor-
mations:

SATl:SA flj T~
ðð
dqdpfl(q,p)A(q,p)

~

ðð
dqdpfl(q,p)A(qzlq.G ,p{lG .p)

~SA flj TzlGmnSA
mn

flj T

~SA flj TzlSA’ flj T

(B8)

where we expanded the dynamical variable

A(qzlq.G ,p{lG .p)~A(q,p)zlA’(q,p)zO(l2)

and

A’~GT : A~GmnAmn, Amn(q,p)~qm
LA

Lqn
{

LA

Lpm
pn: (B9)

Combining eqns. (B7) and (B8) gives the final result

SATl~SATzlSA’T{bl½SAH ’T

{SATSH ’T�zO(l2):
(B10)

This has exactly the same form as eqn. (B4), but the derivatives
H’ and A’ are defined by eqns. (B6) and (B9) instead of
eqns. (B2) and (B5): neither H nor A depend mechanically on
l. Note that, once the result has been cast in the form of
eqn. (B10), we no longer need to distinguish between the two
sets of coordinates {q,p} and {q̊,p̊}: they differ only
infinitesimally from each other and they are, in any case,
integrated over in performing ensemble averages.
The above derivation may seem mysterious. We seem to have

got something out of nothing (a transformation of variables);
only the boundary term Ul(q) transformed differently from the
rest of the hamiltonian, and it does not feature prominently in
the final result. Nonetheless, it is easy to see that, if Ul(q)~0,

and hence Hl~H, the result is trivial. For then, Hamilton’s
equations

_qm~
LH

Lpm
_pm~{

LH

Lqm

and the hypervirial relations53

S
LA

Lqm
T~bSA

LH

Lqm
T S

LA

Lpm
T~bSA

LH

Lpm
T

allow us to deduce from eqns. (B6) and (B9)

Hmn~{
d

dt
(qmpn)[SH ’T~0

and SAmnT~bSAHmnT[SA’T~bSAH ’T

making the right hand side of eqn. (B10) vanish. To put this in
a familiar context, consider the response of the system to a
homogeneous deformation of centre-of-mass positions. In this
case, G may be condensed to a 363 strain matrix which applies
to all molecules

qm?cia lGmn?lGiajb~dijeab

where the small parameter l has now been absorbed into the
gradient tensor e. This means that positions and linear
momenta transform as

rib~ribzriaeab pia~pia{eabpib Vi

while it is understood that all orientational variables are left
unchanged. Correspondingly, Hmv reduces to the 363 stress
tensor

Sab~
X

i

ria
LH

Lrib
{

LH

Lpia
pib~{

X
i

(riafibzm{1
i piapib)

and the internal part of the hamiltonian transforms as

H(q,p)~H(q,p)zeabSab(q,p)

Setting A~Sab in eqn. (B10) gives a stress–strain relation

SSabTe~SSabTzecdSTabcdT

{becd SSabScdT{SSabTSScdT
� � (B11)

with

Tabcd~
X

j

rjc
LSab

Lrjd
{

LSab

Lpjc
pjd

~
X

ij

riarjc
L2H

LribLrjd
{

L2H

LpiaLpjc
pibpjd

(B12)

from which the elastic constants (and, if the time dependence is
analyzed, viscosity coefficients) may be obtained.25,27,55,57

Using the fact that the equilibrium canonical distribution
function factorizes into independent configurational and
momentum-space parts, it is easy to see that the static cross-
correlations are zero. The momentum-space part is relatively
easy to evaluate. The configurational part of nTabcdm in
eqn. (B12) is the so-called ‘Born term’, which dominates at low
temperature; the ‘fluctuation term’ 2b[nSabScdm2nSabmnScdm]
may be significant at higher temperatures; in the fluid state, for
shear strains, these terms exactly cancel.27

In the case of interest to us, the nonzero elements of G
generate gradients of molecular orientation. Provided the
deformations are small, the angles hi may be treated as
generalized coordinates, and the conjugate momenta are the
corresponding Cartesian components of intrinsic angular

˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚

˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚

˚ ˚

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚
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momentum si. The coordinates become qmA{ria,hia}, and lG
may be contracted to the following transformation

hib~hibzriacab

sia~sia{cabpib Vi

where it is understood that the positional coordinates and
momenta are not transformed, and we once more absorb the
small parameter l into the definition of cab. The corresponding
‘stress’ is

Pab~
X

i

ria
LH

Lhib
{

LH

Lsia
pib;

in terms of which the internal hamiltonian transforms as

H r,h,p,sð Þ~H r,h,p,sð ÞzcabPab r,h,p,sð Þ

Once more, one may separate momentum-space and config-
uration-space terms, and in this case it is possible to show that
the former do not contribute to the final result. The matrix P
takes the form

Pab~
X

i

ria
LV
Lhib

: (B13)

The orientational stress-strain relation is

SPabTc~SPabTzccdSJabcdT{bccd½SPabPcdT

{SPabTSPcdT�
(B14)

consisting, as in the solid-state elastic constant case, of a Born
term with a variable formally defined by

Jabcd~
X

i

X
j

riarjc
L2V

LhibLhjd
(B15)

and a fluctuation term; these two terms should cancel exactly in
the disordered, isotropic, fluid. Convenient expressions for Pab

have been obtained by several authors.19–22,30 We proceed by
re-writing Pab as follows:

Pab~
X

i

ria
LV
Lhib

~{
X

i

riatib~{
X
i=j

riatijb

~{
1

2

X
i=j

riatijbzrjatjib:

Here we have assumed that the total torques on the respective
molecules i, j can be decomposed into pairwise contributions
ti~Sj tij, tj~Si tji, and finally we have symmetrized the double
sum with respect to i and j. Now set

ri~rijzrj

to give

Pab~{
1

2

X
i=j

rijatijbzrja(tijbztjib):

Invariance of the pair potential energy to rotation of all the
vectors together (i.e. angular momentum conservation) guar-
antees that

tijztjizrij ^ f ij~0:

This leads us to drop the second term: it is proportional to the
vector dual of the antisymmetric stress, which vanishes in a
fluid. (This remark holds true, strictly speaking, only after
ensemble averaging). Thus, our final result is

Pab~{
1

2

X
i=j

rijatijb (B16)

This expression is origin-independent, which is a requirement

in periodic boundaries. A somewhat more satisfactory Fourier-
space derivation of this result, taken from Allen and Masters,19

was given in the main text, leading to eqn. (25). No
corresponding derivation of Jabcd in origin-independent
form, starting from eqn. (B15), has appeared in the literature
to date, and this is a significant obstacle to testing stress-
formulae for liquid crystal elastic constants.

Appendix C: Comparison with Nemtsov–Osipov
expressions

Note that Nemtsov and Osipov30 adopt transposed definitions
which we will write

c{ab~Lbha so our gradient cab~c{ba

P{
ab~{

1

2

X
i=j

tijarijb so our tensor Pab~P{
ba:

Billeter and Pelcovits52 seem to define Pba with the opposite
sign; however, this discrepancy may be cancelled by ambiguity
in the sign convention for the centre-centre vector rij. Nemtsov
and Osipov30 then define

Eabc~{
bSPaP

{
bcT

V

so that
SPaT

V
~Eabcc

{
bc~Eabc[bmnn̂mLcn̂n

where sabc is the Levi–Civita tensor. Then they express

Eabc~E1[abczE2n̂cn̂m[mabzE3n̂an̂m[mcbzE4n̂bn̂m[mac

~E1[abczE2dcz[zabzE3daz[zcbzE4dbz[zac

(C1)

with our chosen axes.
For the splay deformation of section III B, our interest lies in

Pz, for which only two components of E contribute

Ezbc~E1[zbczE3[zcb~(E3{E1)[zcb:e1[zcb

[e1~Ezyx~{
bSPzP

{
yxT

V
~{

bSPzPxyT
V

~{Ezxy~
bSPzP

{
xyT

V
~

bSPzPyxT
V

:

Nemtsov and Osipov30 write this as (converting to our axes)

e1~{
1

2
Eabc[mbcn̂an̂m~{

1

2
Ezbc[zbc

~{
1

2
(Ezyx{Ezxy):

These results agree with our eqn. (37).
For the bend flexoelectric coefficient, return to eqn. (C1); our

interest lies in

Exbc~E1[xbczE2dcz[zxbzE4dbz[zxy[

Exyz~E1zE2:e3

Eybc~E1[ybczE2dcz[zyb[Eyxz~{E1{E2~{e3

So

e3~Exyz~{
bSPxP

{
yzT

V
~{

bSPxPzyT
V

~{Eyxz~
bSPyP

{
xzT

V
~

bSPyPzxT
V

:

Nemtsov and Osipov30 write this as (converting to our axes)

e3~
1

2
Eabc[abmn̂cn̂m~

1

2
Eabz[abz~

1

2
(Exyz{Eyxz):

These results agree with eqn. (43) of the main text.

{
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